The use of combined 3.5 LCP unicortical plate and nail fixation in proximal tibia fractures and prevention of valgus and anterior angulation

Reza Abdi¹, Moein Aboobakri²

¹ Assistant Professor, Department of Pediatric Orthopedics, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
² Student of Medicine, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran

Abstract

Introduction: Intramedullary nailing (IMN) of high tibia fracture has some mechanical and biological advantages over the other form of fixation. However, valgus, apex anterior malalignment and anterior displacement of proximal fragment commonly occur after isolated IMN fixation of proximal high tibia fracture. The purpose of this study is to determine the effectiveness of using 3.5-mm locking compression plate (LCP) with unicortical screws combined with IMN fixation to maintain the difficult reduction and prevent any displacement after classic nail insertion.

Methods: This cross-sectional study was performed between 2010 and 2012, thirty-three open or closed tibia fractures involving the high proximal tibia metaphysis were operated using combined 3.5 mm LCP unicortical plate with the classic reamed intramedullary nailing technique. The clinical and radiological results of the study were collected on the basis of the time to union, nonunion, malunion, degree of angulations at the fracture site, and infection. Follow-up ranged from 24 to 36 months (mean 28 months).

Results: The union rate was 100% on radiographs at 3.38 months postoperatively. No complications such as malunion, delayed union, implant failure, prominent valgus, anterior angulation malalignment, or postoperative deep infection occurred.

Conclusions: Although prominent malalignment occurs after IM nailing of proximal one-third tibia fractures, we can avoid it by using the medially inserted 3.5 LCP unicortical plate. The results are good even in open fracture type one or two.

Key Words: Nail; Tibia, Intramedullary; Proximal; Fracture; Fixation

Introduction

Open fracture and/or comminuted fracture of proximal one-third of tibia have frequently proved problematic, and the choice between plating or Intramedullary nailing (IMN) is a matter of debate.
The use of combined 3.5 LCP unicortical plate and nail fixation in proximal tibia fractures and prevention of malunion

Methods

This cross-sectional study was performed between 2010 and 2012, thirty-three tibia fractures involving the high proximal metaphysis were operated using 3.5-LCP unicortical plates combined with classic reamed IMN technique by one senior trauma surgeon. The protocol of the study was approved by the Institutional Ethics Committee under the identifier IR.BUMS.REC.1394.212. The inclusion criteria were displaced closed or open (Gustilo Anderson types I and II) displaced tibial proximal metaphyseal fractures.

Synthesis universal nail with one or two proximal transverse locking bolt(s) and 5- or 6-hole 3.5-mm LCP plate based on the fracture obliquity was used. The diameter of the nail was 10 or 11 mm based on the tibial canal diameter.

We used open reduction and permanent 3.5-LCP unicortical plate fixation of proximal tibial fracture before rimming fragments in 33 proximal one-third tibial fractures.

If the fracture was open medially (Gustilo Anderson types I and II), we used the plate through the wound after debridement without extensive soft tissue stripping. Almost always, the open wounds were medial whereby we applied the unicortical plate medially.

If the fracture was closed, we applied the plate upon the periosteal tissue with 4-5 cm medial proximal tibia incisions.

Because of the thin proximal metaphyseal cortex, we used LCP plate and locking screws. The jump distances between the threads in the locking screw is shorter than the cortical screw so more threads remain in the thin metaphyseal cortex, and more stability of plate fixation has been achieved.

Often, we used the 5-hole plate and two screws at either side of the fracture. However, in the comminuted or long oblique fracture, we used the 6-hole plate and three unicortical locking screws at either side of the fracture without soft tissue stripping of the fragments.

IMN fixation of the fractures with medial parapatellar approach (not through patellar tendon) was accomplished routinely after plate fixation.

The clinical and radiological results of the study were collected on the basis of the time to union, nonunion, malunion, degree of angulations at the fracture site, and infection.

Follow-up ranged from 24 to 36 months (mean 28 months). All patients were assessed according to the malalignment, union and infection periodically.
The use of combined 3.5 LCP unicortical plate and nail fixation in proximal tibia fractures and prevention ... Abdi & Aboobakri

Results

Thirty-one patients were male and two were female. All patients had traffic accidents. The mean patient age was 34.3 (20-65) years. Most of the patients (n=20) were open, i.e., Gustilo-Anderson class type one or two (15 type I and 5 type II), while the remaining were closed. Among type I open fracture group, three cases had segmental metaphyseal-diaphyseal fracture (Fig. 1).

The union rate was 100% on radiographs at 3.38 months (3 to 5 months) postoperatively. No complications such as implant failure, prominent valgus, anterior angulation malalignment, or postoperative deep infection occurred. However, two patients had superficial infections that were cured with oral antibiotics.

Mean valgus angulation at the fracture site was 2.61 (SD: 3.5 degree) without measurable anterior angulation at final follow-up.

Discussion

Among the frequent consequences of intramedullary fixation of proximal one-third of the tibial fracture are valgus, apex anterior malalignment, and anterior displacement of proximal fragment (1-4). A distal Herzog bend has a tendency to create a wedge effect, pushing the distal fragment posteriorly (4, 7). Malreductions of 5 degrees or more in proximal tibial fractures using isolated IMN is well documented. The incidences of malreduction rates range from 3% to 100% (8, 9).

However, various methods have been introduced to avoid malalignment after nailing of one-third proximal tibial fractures. Yet, isolated plating still remains as the standard method of fixation.

Meanwhile, blocking screws or supplemental plate fixation when combined with IMN can achieve stable, well-aligned fixation (6, 8-11). However, there are few clinical trials to show a clear advantage with plating and nailing of proximal tibial fractures (4, 12).

In 1997, Mattews described the anterior unicortical buttress plating before nail placement and in combination with unreamed intramedullary nailing to avoid valgus malalignment (13).

In 2005, Dunbar used dynamic compression plate placed through the open wound in type III open tibial shaft fractures before intramedullary nailing (6).

In 2006, Nork used provisional plate with IMN in open and closed proximal tibial fractures and reported acceptable alignment in approximately 92% of the cases at a mean 19-month follow-up period (5).

There is a paucity of evidence about the plate fixation before IMN of proximal tibial fracture. Nonetheless, all of them recommend the method (2, 5, 6, 11, 13, 14).

Plating of closed or open fractures of proximal tibia before IMN allows to avoid displacement of fragments after nail insertion. Plates are especially useful in situations where techniques such as blocking screws are contraindicated, e.g., osteoporosis, severe comminution, articular extension, etc. (4, 11).

Also, percutaneous supplemental plate fixation without soft tissue stripping can be used during closed fractures (4, 11).

We used open reduction and permanent 3.5-LCP unicortical five- or six-hole plate fixation of proximal tibial fracture without soft tissue stripping of fragments before rimming of fragments in 33 proximal one-third tibial fracture. IMN insertion was through classic medial parapatellar approach.

Follow-up ranged from 24 to 36 months. Mean valgus angulation at the fracture site was 2.61(SD: 3.5 degree) without measurable anterior angulation at last follow-up. The union rate was 100% on radiographs. No complications such as implant failure, prominent valgus or anterior angulation malalignment or postoperative deep infection occurred.

Conclusions

In summary, although prominent malalignment occurs after IMN of proximal one-third tibial fractures, we can avoid it by using medially inserted 3.5 LCP unicortical plate. The results are good even in the case of open fracture type one or two.

This study is based on retrospective evidence and clinical trials are needed to definitively assess and compare the results of various fixation procedures in tibial proximal metaphyseal fractures.

Acknowledgment

The authors thank participated patients and Imam Reza Hospital staff in the general operating room and surgical ward for their contribution to this study.
Conflict of interest
The authors declare no conflict of interest.

References