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Abstract 
As computational power and data science continue to advance at an unprecedented pace, their influence is reshaping 
various scientific fields, including medicine. While machine learning (ML) has already made substantial strides in 
diagnostic areas, such as radiology and pathology, its role in surgery is an emerging frontier. This narrative review 
examines the current literature on artificial intelligence (AI) and ML applications in general surgery, with a particular 
focus on their ability to support clinical decision-making, streamline surgical workflows, and improve patient outcomes. 
Key topics explored include predicting discharge dates, assessing preoperative risk for both elective and emergency 
surgeries, and the innovative use of AI in resident education and simulation training. By evaluating these developments, 
the practical challenges, ethical concerns, and future prospects of integrating AI into surgical practice were discussed. 
Ultimately, this review highlights the transformative potential of AI and ML in surgery, suggesting that these technologies 
will play a key role in enhancing care quality and the professional growth of surgeons. 
 
Key words: Artificial Intelligence (AI), General Surgery, Machine Learning (ML) 
 

Introduction 

The rapid progression of computational power 
and data science has sparked a revolution across 
multiple scientific fields, with medicine standing at 
the forefront of this transformation. Among the 
most impactful innovations are machine learning 
(ML) and artificial intelligence (AI) systems 
designed to replicate human intelligence in 
analyzing data, recognizing patterns, and making 
predictions. These technologies are already making 
significant strides in diagnostic fields like radiology 

and pathology, where they have improved accuracy 
and efficiency. However, their role in surgery 
remains an emerging and evolving frontier with 
vast untapped potential. 

AI and ML are becoming increasingly vital tools 
in enhancing clinical decision-making, patient care, 
and surgical education. For instance, these 
technologies help surgeons predict optimal 
discharge dates, assess preoperative risks for both 
elective and emergency surgeries, and advance 
resident training through simulation and decision-
support systems. Despite their promising 
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capabilities, the integration of AI and ML into 
general surgery brings forth important questions 
regarding their current applications, future 
prospects, and the challenges and limitations they 
may present (1-8). 

This narrative review focuses on the application 
of AI and ML within general surgery—a 
multifaceted field that spans subspecialties like 
gastrointestinal, endocrine, and trauma surgery. 
While the breadth of general surgery is vast, this 
review highlights key areas where these 
technologies have shown considerable potential, 
including clinical decision-making, workflow 
optimization, and education. By addressing existing 
gaps in the literature and examining the evolving 
role of these innovations, the present study aims to 
offer a clearer perspective on how AI and ML are 
shaping the present and future landscape of surgical 
practice. 

The review will not only assess the current state 
of AI and ML in surgery but will also consider their 
future implications, ethical concerns, and challenges 
associated with their integration. By examining the 
dynamic intersection of surgery and data-driven 
technologies, we hope to shed light on their 
transformative potential and profound impact on 
the future of surgical care. 

Methods 

This narrative review adhered to a structured 
approach in examining the use of AI and ML in 
general surgery. We conducted a thorough 
literature search across electronic databases, 
including PubMed, Scopus, and Google Scholar, to 
identify pertinent articles. Boolean operators, such 
as "AND," "OR," and "NOT," were employed to refine 
the results. Specific search queries included 
combinations, such as "artificial intelligence AND 
general surgery," "machine learning OR artificial 
intelligence AND preoperative planning," and 
"surgical training NOT diagnostics." The final search 
was performed on December 15, 2024. 

The search period covered studies published 
between 2013 and 2024, a timeframe selected to 
capture the most relevant advancements in AI and 
ML. This focus reflects the significant rise of these 
technologies in healthcare and surgery over the past 
decade. Earlier studies were included if they offered 
foundational insights or key methodologies that 
contributed to the application of AI/ML in surgery. 

To ensure the rigor of the review, two 
independent reviewers evaluated the identified 
studies for eligibility and quality. Disagreements 
were resolved through discussion or by consulting 
a third reviewer. Studies were included if they met 

the following criteria: peer-reviewed articles, 
reviews, clinical studies, or expert opinions focusing 
on AI/ML in general surgery, with particular 
emphasis on preoperative planning, postoperative 
outcomes, surgical risk prediction, and resident 
training. Articles unrelated to general surgery or 
those focused solely on diagnostic fields without 
direct implications for surgical practice were 
excluded. 

The quality of the included studies was assessed 
based on their methodological rigor, relevance to 
general surgery, and transparency in reporting 
AI/ML techniques. Emphasis was placed on the 
appropriateness of the models used, the robustness 
of the data sets, and the validity of the outcomes in 
real-world surgical environments. This systematic 
and evidence-based approach was designed to 
provide a comprehensive understanding of how AI 
and ML are reshaping the field of general surgery. 

Results 

Predictive modeling for surgical site infections 
(SSI) 

In a retrospective cohort study, a predictive 
model achieved an Area under the ROC curve (AUC) 
of 0.84 for identifying the type of surgical site 
infection (SSI) and an AUC of 0.74 for predicting the 
postoperative week of SSI development. Unlike 
previous models, which primarily focused on 
identifying SSI development, this study also 
explored intraoperative characteristics as potential 
contributors (1-6). Distinguishing between 
superficial and deep/organ space infections is 
crucial due to their impact on patient outcomes, 
with risk factors varying between these types. For 
instance, irradiation therapy is associated with 
deep/organ space SSIs, while body mass index 
(BMI) is linked to incisional infections. The study 
underscores the importance of implementing 
systematic measures in SSI prevention, particularly 
in areas, such as antibiotic administration and 
intraoperative normothermia (9). 

Predicting surgery cancellations using ml 
Liu et al. employed ML techniques, primarily 

using electronic health record (EHR) data, to 
predict surgery cancellations with impressive 
accuracy (AUC up to 0.78) at two different 
campuses. Logistic regression models, especially a 
gradient-boosted variant, showed the highest 
predictive power. What is remarkable is that 
models trained on one campus performed nearly 
as well on the other despite differences in 
workload and patient demographics (10). 

The ML models excelled in predicting "no-show" 
and nothing by mouth (NPO) violation cancellations 
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compared to patient illness and patient/family 
refusal. They also identified important predictors 
for cancellations, including patient age, healthcare 
payer, and timing related to the intervention 
program. Notably, certain predictors differed 
between the two campuses, likely reflecting 
variations in patient populations.  

The study's generalizability between the two 
campuses demonstrates the potential for ML 
methodology to be applied in hospitals with EHR 
systems (10).  

Risk prediction for surgery cancellations 
Regarding the assessment of the surgery risk, 

Luo et al. (2020) illustrated the potential to predict 
surgeries at high risk of cancellation. The ML models 
consistently achieve AUCs above 0.6 in the test set, 
with the best performance at 0.682 for Random 
Forest (RF) with oversampling. These models 
maintain stable performance, with a slight 
difference of under 0.04 between their upper and 
lower bounds. The ML models in this study exhibit 
high Negative Predictive Values (NPV), 
approximately 0.9, indicating that 90% of surgeries 
labeled as low risk are not canceled, which 
effectively filters out most negative cases, 
narrowing down the set of surgeries with potential 
issues (11). 

Different sampling methods can be employed to 
adjust the model’s performance, with oversampling 
and undersampling, which affect sensitivity and 
specificity compared to the original method. It is 
noteworthy that the practitioners' preferences play 
a role in determining the model's performance (11).  

AI-based mortality and morbidity prediction in 
emergency surgery 

Performance of the Predictive Optimal Trees in 
Emergency Surgery Risk (POTTER) tool, an AI-
based calculator, in the context of emergency 
general surgery (EGS), is the topic of another study 
investigating the role of AI in predicting mortality 
and morbidity of surgeries (12). The mentioned 
article evaluated the effectiveness of the POTTER 
tool in predicting the 30-day outcomes of patients 
undergoing EGS. The tool accurately predicted both 
mortality and morbidity in this patient population. 
As a smartphone application, POTTER served as a 
valuable bedside tool for counseling patients and 
family members before EGS procedures. It could 
also be used as a risk adjustment tool for assessing 
the quality of EGS care (12). 

The EGS represents a significant public health 
concern, making up a substantial portion of hospital 
admissions and surgical mortality (13). The 
nonlinearity of surgical risk in EGS patients requires 
advanced technology to detect and understand 

these complex patterns (12, 14).  
Unlike some ML methods, POTTER is 

transparent and interpretable. It relies on the 
Optimal Classification Tree (OCT) technology, 
which can achieve high accuracy without sacrificing 
interpretability. This transparency allows 
physicians to understand how the risk estimates are 
calculated. The tool could assist in improving the 
benchmarking of EGS care quality and guiding 
discussions with patients and their families. 
Moreover, it may help in the postoperative triaging 
of high-risk patients (12). 

Concerning the prediction of only a 30-day 
outcome, El Hechi et al. suggested the integration of 
OCT algorithms into a hospital’s electronic medical 
record (EMR) as a way to address limitations and 
enhance the accuracy and applicability of risk 
predictions. Finally, it seems that POTTER is a 
valuable tool for predicting outcomes in EGS 
patients and has the potential to improve decision-
making and quality benchmarking in this surgical 
specialty (12).  

Another study conducted by Gao et al. 
represents the first attempt to develop an ML 
algorithm tailored to predict mortality following 
EGS. The ML algorithm exhibited exceptional 
performance in predicting EGS mortality when 
compared to existing risk-prediction models, such 
as the American Society of Anesthesiologists 
(ASA) classification, American College of Surgeons 
Surgical Risk Calculator (ACS-SRC), and Multi-
Feature Learning (MFL) (15). The model achieved 
superior accuracy, as indicated by various metrics, 
including AUC, sensitivity, specificity, Positive 
Predictive Values (PPV), and NPV. To optimize the 
ML model and mitigate issues related to 
overfitting and parameter optimization, they 
employed an ensembled ML classifier, which 
combined two distinct ML algorithms, Gradient 
Boosting Machine (GBM) and Multi-layer 
Perceptron Artificial Neural Network (MLP ANN) 
(15). This approach maximized the benefits of 
each algorithm while minimizing their limitations. 
Parameter optimization was conducted using a 
grid search technique to determine the best 
combination of hyperparameters for accurate 
mortality prediction (15). 

ML for automated surgical skill assessment 
In the context of robot-assisted surgery, there is 

a growing interest in automating assessment and 
feedback using ML, as it allows for the transparent 
capture and analysis of high-quality surgical motion 
data (16). One key step is automated surgical 
activity recognition, which involves identifying 
surgical activities and their timing, even for new 

 [
 D

O
I:

 1
0.

61
18

6/
js

ur
gt

ra
um

a.
13

.2
.4

6 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 js

ur
ge

ry
.b

um
s.

ac
.ir

 o
n 

20
25

-0
8-

24
 ]

 

                               3 / 9

http://dx.doi.org/10.61186/jsurgtrauma.13.2.46
http://jsurgery.bums.ac.ir/article-1-452-en.html


Torabi A et al                        AI and General Surgery 

 

47 

trainees without prior annotated data. 
It is noteworthy that different research has 

focused on recognizing activities and gestures using 
different techniques like hidden Markov models 
(HMMs) and conditional-random-field (CRF) based 
methods (17). DiPietro et al. addressed both 
gestures and maneuvers, which are more 
complicated, such as suture throw and knot tying, 
and administered recurrent neural networks 
(RNNs) to evaluate their effectiveness. 

Hyperparameter analysis in surgical skill 
assessment 

An essential aspect of the study of DiPietro et al. 
(2019) is the hyperparameter analysis, which 
reveals the importance of factors, including the 
number of hidden units per layer and the learning 
rate. Additionally, it demonstrates that RNNs, 
especially long short-term memory (LSTM) and 
gated recurrent unit (GRU) models, outperform 
simple RNNs due to their ability to handle the 
vanishing gradient problem and maintain smooth 
predictions (17). 

Skill-level classification in surgical trials 
An investigation by Ismail Fawaz et al. (2018) 

introduces a skill-level classification task for 
surgical trials involving novice, intermediate, and 
expert levels. The study evaluates various models' 
performance in classifying these skill levels using 
micro and macro accuracy metrics. The results 
indicate that a particular model, a fully convoluted 
neural network (FCN), outperforms others with 
notably high accuracy, especially in needle passing 
and suturing tasks. However, its performance is 
relatively lower for the knot-tying task due to minor 
differences between expert and intermediate 
participants. 

Class activation maps (CAM) for skill 
visualization 

The article also highlights the use of CAM to 
visualize the most influential parts of surgical trials 
in skill classification. This visualization allows 
trainees to understand and improve their motor 
behaviors, potentially helping novices progress to 
expert levels. Additionally, the CAM technique's 
potential for providing feedback is demonstrated 
through heatmaps. These heatmaps reveal patterns 
that influence a subject's skill level classification. 
They can be used to guide novices in understanding 
which movements classify them as novices or 
experts. The article also applies the CAM technique 
to explain the prediction of the Objective Structured 
Assessment of Technical Skills (OSATS) scores. It 
shows how specific predictions rely on various 
regions of the input surgery, depending on the 

nature of the task (18).  

Feature extraction for real-time surgical skill 
analysis 

In a study, the authors extensively compared 
various feature extraction techniques for analyzing 
surgical skill levels in near real-time. Notably, four 
deep learning models, including Convolutional 
Neural Network (CNN), CNN-LSTM, LSTM, and 
Principal Component Analysis (PCA), outperformed 
other techniques, with CNN exhibiting the highest 
accuracy. Ensemble techniques, while potentially 
effective, might not be suitable for near real-time 
assessment due to computational demands (19). 

The optimal time window for skill assessment 
varies among different skills, suggesting the 
importance of considering skill duration. The deep 
learning models were designed for efficiency in near 
real-time applications. Overall, the study offers 
valuable insights for medical engineers and 
researchers seeking feature extraction techniques 
for automated surgical skill assessment. Future 
work aims to explore additional techniques and 
datasets for a comprehensive evaluation (19).  

Learning curve analysis and surgical skill 
progression 

A study by Gao et al. demonstrates the potential 
of ML in assessing a trainee's surgical skill 
progression during repetitive trials. It shows that 
from these early trials, the number of trials required 
to achieve proficiency and the final performance 
level (average Fundamental of Laparoscopic 
Surgery [FLS] score after the 40th trial) can be 
accurately predicted. A single factor, referred to as 
"learning ability (LI)," is introduced to capture 
common variations within these parameters and 
the initial performance level (20). 

The study challenges the conventional use of log-
linear models for learning curve analysis. While log-
linear models rely on predefined curve forms and 
group data, the proposed Kernel Partial Least 
Squares (KPLS) regression model offers a data-
driven approach without assumptions about curve 
shapes, making it more suitable for capturing the 
complex process of surgical skill learning (20). 

Furthermore, the study highlights the potential 
applications of ML in surgical training programs. 
The early prediction of learning curve variables in 
training can enable personalized training, more 
focused feedback, and adaptive learning strategies. 
By clustering trainees based on learning curve 
characteristics, the study identifies distinct groups 
with unique performance profiles, indicating that 
individuals with different initial skill levels require 
different practice to reach proficiency (20).  
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Deep learning for Real-time bacteremia detection 
Using deep learning, Park et al. (2020) 

introduced a model for real-time bacteremia 
detection and prediction in surgical inpatients. 
Their model achieved an AUC of 0.978 for 
bacteremia detection every 8 h, outperforming 
existing criteria. In the prediction of bacteremia 24 
h in advance, the model achieved an AUC of 0.929, 
albeit slightly lower compared to that of the 
detection model (21). 

The occlusion analysis revealed that vital signs 
played a crucial role in bacteremia detection. The 
model using longer time steps (10 days vs. 1 day) 
provided more accurate results, indicating that 
patterns of time-variant variables, such as vital 
signs, contribute significantly to the 
characterization (21). 

This study is valuable for continuous bacteremia 
monitoring, assisting clinicians in assessing the risk 
of uncontrolled infection. Unlike other sepsis 
prediction studies relying on clinical assessments, 
this model uses direct blood culture results, 
simplifying interpretation. The resulting predicted 
probabilities offer clear guidance for identifying 
infection sources, initiating antibiotics, and 
monitoring responses (21). 

Surgical skill development using kinematic data 
Lefor et al. (2021) presented a learning curve 

analysis of the Johns Hopkins–Intuitive Gesture and 
Skill Assessment Working Set (JIGSAWS) dataset, 
examining global rating scores (GRS) and kinematic 
parameters, such as time, path length (PL), and 
movements. Their analysis compared performance 
between the first and fifth trials for the exercises, 
offering insights into surgical skill development (22). 

In a work conducted by Lefor et al., GRS score 
analysis did not reveal a learning curve effect for 
any exercise, unlike a prior study involving a more 
complex task (23).  However, the analysis indicated 
a learning curve effect for time in the suturing 
exercise and PL in the needle-passing exercise. The 
researchers explained that this might be due to the 
smaller size compared to other studies and the 
nature of the exercises.  

In this regard, kinematic data from the da Vinci 
surgery system is used for skill assessment in 
clinical surgery; however, its association with GRS 
scores is not always strong. Some studies have 
found weak correlations between kinematic 
parameters and skill levels (24, 25). 

AI for mitigating distractions in the operating 
room (OR) 

A novel study addressed the issue of distraction 
in surgical environments, which can negatively 
impact the efficiency of surgical procedures and 

potentially lead to medical errors and patient safety 
issues. Despite the acknowledged importance of 
mitigating distractions in the OR, the current 
methods for assessing distraction are subjective and 
rely on human observation (26). 

In this pilot study, the researchers developed a 
deep CNN algorithm that leveraged 
electroencephalography (EEG) data from 
participants performing robotic-assisted surgical 
tasks. The results of the study indicate that EEG data 
can be effectively used in a deep learning model to 
objectively evaluate the distraction level of 
surgeons, potentially contributing to improved 
patient safety in the OR (26). 

AI in surgical simulation training 
A pioneering clinical trial in the literature 

assessed the effectiveness of AI-driven tutoring 
systems compared to traditional expert-led 
instruction in surgical simulation training. The 
research presents several noteworthy insights. 
First, it demonstrates that AI tutoring, particularly 
through an AI-powered virtual reality simulation 
platform, proves to be a valuable tool in surgical 
simulation training. The AI system offers feedback, 
establishes performance objectives, and contributes 
to the enhancement of participants’ performance 
during practice sessions and realistic scenarios. 
This enhancement is quantitatively measured using 
expertise scores (27). 

The study introduces AI-based feedback for 
surgical training, proving to be more effective and 
efficient than remote expert guidance. It reduces 
supervision time by approximately 53 h over 13 
weeks while improving performance. Surprisingly, 
it does not evoke negative emotions, and 
participants prefer a combination of AI and expert 
instruction. This finding highlights the potential of 
hybrid approaches for optimal learning (27).  

ML for predicting postoperative respiratory 
failure (PRF) 

A study on EGS patients revealed a 10% PRF rate 
linked to higher mortality and costs. To address this, 
an ML model was introduced for PRF prediction 
using preoperative data, outperforming traditional 
logistic regression. Patients with PRF often have 
comorbidities like congestive heart failure and renal 
dysfunction, guiding perioperative strategies. 
Existing PRF risk models faced adoption challenges. 
The ML models provide more straightforward and 
accurate predictions, are suitable for EMRs, enhance 
patient care, and standardize protocols (28).  

ML for predicting anastomotic leakage (AL) 
In a retrospective study conducted at Xinhua 

Hospital with a cohort involving 297 patients from 
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the Department of General Surgery, researchers 
found that postoperative AL occurred in 
approximately 6.1% of the patients. This rate was 
consistent with findings from previous 
investigations (29). 

Multiple factors contribute to postoperative AL, 
including malnutrition, local inflammation, and 
patient characteristics. Researchers have explored 
systemic immune nutritional markers as predictors. 
According to findings, C-reactive protein (CRP) on 
postoperative day 4 emerged as a common 
predictor, along with variables like neutrophil-to-
lymphocyte ratio (NLR) on day 4 and minimum 
serum albumin level. The ML models, particularly 
support vector machine (SVM), integrating both 
inflammatory and nutritional variables, 
demonstrated promising results with an AUC of 
0.89. This approach enhances AL prediction and 
improves model performance while avoiding 
overfitting (30). 

A comparison between ML and non-ML models 
highlighted the superiority of ML in predicting 
postoperative AL. The ML models considered 
multiple factors, acknowledging the multifaceted 
nature of AL. Feature analysis revealed the 
significance of variables like CRP and albumin 
levels, as well as variational indexes, including 
changes in albumin levels, white blood cell counts, 
and CRP. This research emphasized the value of 
analyzing clinical variable trajectories for 
prognostic studies (30). 

An interesting finding was that CRP measured on 
postoperative day 7 exhibited the best AUC, 
surpassing other variables. However, due to a 
substantial number of AL cases presenting 
symptoms within the first week after surgery, CRP 
on postoperative day 7 may be more indicative of AL 
onset rather than a predictive risk factor (30). 

Decision trees for mortality prediction in egs 
patients 

High mortality rates in EGS patients are 
considered a global concern. A study used decision 
trees to predict mortality in EGS patients 
undergoing laparotomy. Key findings include the 
varying significance of comorbidities, with age and 
specific comorbidities strongly linked to mortality. 
Physiological factors, such as base excess (BE) and 
serum urea, emerged as essential predictors for 
high-risk patients. Shock Index was valuable for 
patients with enteric breaches. This risk assessment 
approach allows for the application of damage 
control principles, potentially improving outcomes 
in the EGS population. These findings establish the 
foundation for improved risk assessment and 
tailored interventions to enhance the prognosis of 

EGS patients (31).  

AI and ML-based risk prediction models in 
surgery 

In El Moheb et al.’s study (2023), the AI model 
POTTER demonstrated superior performance over 
surgeons in predicting postoperative outcomes for 
EGS cases. While performance varied for different 
outcomes, POTTER and surgeons performed 
similarly for septic shock but fell short when used in 
combination. The study stressed the importance of 
assessing outcomes individually, with variations in 
surgeon experience levels potentially favoring the 
use of POTTER in clinical practice. It highlighted the 
limitations of human cognitive capacity in dealing 
with complex data compared to AI. The POTTER's 
capability in analyzing intricate nonlinear 
interactions of risk factors surpassed human 
judgment, which can be influenced by biases and 
tends to overestimate risks, especially in mortality 
and adverse outcomes. The study concluded that AI 
algorithms like POTTER should complement clinical 
judgment, enhance risk assessments, and improve 
patient counseling. 

While AI excels in data analysis, it requires active 
human engagement to interpret and contextualize 
its predictions. The study emphasized that the 
underutilization of AI tools in surgery is not due to 
a lack of acceptance but rather a lack of access and 
trust in their capabilities. Efforts should focus on 
increasing understanding and integration of AI-
based risk prediction tools into clinical practice to 
enhance healthcare efficiency and delivery. Overall, 
the study highlights the potential benefits of AI in 
improving clinical risk assessment and decision-
making, emphasizing the need for further research 
and AI tool integration in healthcare (32).  

Another investigation aimed to improve the 
prediction of overall survival after 
gastroesophageal cancer resections using ML, 
particularly the random survival forest (RSF) 
model, which outperformed the traditional Cox 
proportional hazards (CPH) model with a c-index of 
0.736. While the study benefited from detailed 
patient data, it recognized the need for practicality 
and selected the 20 most crucial features to create 
extended and compact RSF models that surpassed 
the CPH model. The findings could pave the way for 
an online application similar to the surgical risk 
calculator by the American College of Surgeons. 
Clinicians could input 20 variables anonymously, 
allowing for personalized risk assessments and 
survival curves based on risk groups, potentially 
guiding treatment decisions and surveillance in 
clinical trials. 

Systematic follow-up, high data quality, and 
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advanced imputation methods set the mentioned 
study apart from many medical publications. 
However, further prospective analyses and external 
validation are required to confirm the clinical 
relevance of the RSF model and other ML models. 
Minor differences between survival forest models 
may have limited clinical significance, but the study 
demonstrated the algorithms' ability to 
automatically select relevant predictors for long-
term prognosis (33).  

Another study introduced the Adelaide Score, 
an ML-based algorithm for predicting hospital 
discharge within 12-24 hours for general surgery 
patients using clinical observations and laboratory 
data. The RF model demonstrated superior 
performance and calibration, making the Adelaide 
Score a reliable clinical tool for healthcare systems. 
This research addresses the need to assess 
efficiency and outcomes in general surgery, 
offering a data-driven approach to postoperative 
discharge prediction that could potentially 
transform healthcare management. It signifies a 
move towards the incorporation of AI algorithms 
into healthcare systems to enhance efficiency and 
risk management (34).  

AI in surgical suture performance analysis 
Mansour et al. employed CNN models to analyze 

and evaluate suture images, focusing on assessing 
suture performance. The study assessed the models 
using various standard metrics, such as accuracy, 
specificity, precision, recall, and F1 score. The 
results were impressive, with the models 
demonstrating notably high accuracy, particularly 
the Xception model, which achieved a 95% 
accuracy, 96% precision, 95% recall, and 95% F1 
score, highlighting its effectiveness in accurately 
identifying and categorizing suture images. 

Conclusions 

This research stands out from previous methods 
in the field, as it introduced a novel approach using 
CNN models, achieving an impressive 96% accuracy 
in suture image evaluation. This approach is user-
friendly and accessible through an application 
interface, offering significant potential benefits for 
medical professionals. It is noteworthy that it can 
advance surgical education by reducing errors 
resulting from insufficient practice and providing 
efficient digitized tools. 

Furthermore, this study uniquely contributes to 
the existing literature by introducing a user-friendly 
graphical interface. This interface enhances the 
accessibility and usability of the approach, setting it 
apart from previous methods. These findings shed 
light on the potential of deep learning techniques to 

enhance the accuracy and efficiency of suture 
training. By leveraging CNN models, the study 
demonstrated the ability to achieve high accuracy in 
assessing suture images, suggesting that deep 
learning approaches could be valuable for 
improving future training programs. The simplicity 
and accessibility of the approach through an 
application interface make it a practical tool for 
medical professionals seeking to enhance their 
skills (35). 
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