Article in Press                   Back to the articles list | Back to browse issues page

XML Print


Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract:   (328 Views)
As computational power and data science continue to advance at an unprecedented pace, their influence is reshaping various scientific fields, including medicine. While machine learning (ML) has already made substantial strides in diagnostic areas, such as radiology and pathology, its role in surgery is an emerging frontier. This narrative review examines the current literature on artificial intelligence (AI) and ML applications in general surgery, with a particular focus on their ability to support clinical decision-making, streamline surgical workflows, and improve patient outcomes. Key topics explored include predicting discharge dates, assessing preoperative risk for both elective and emergency surgeries, and the innovative use of AI in resident education and simulation training. By evaluating these developments, the practical challenges, ethical concerns, and future prospects of integrating AI into surgical practice were discussed. Ultimately, this review highlights the transformative potential of AI and ML in surgery, suggesting that these technologies will play a key role in enhancing care quality and the professional growth of surgeons.
Full-Text [PDF 401 kb]   (110 Downloads) |   |   Full-Text (HTML)  (17 Views)  
Type of Study: Review | Subject: General Surgery
Received: 2024/09/25 | Accepted: 2025/03/20 | ePublished ahead of print: 2025/04/12

References
1. Hopkins BS, Mazmudar A, Driscoll C, Svet M, Goergen J, Kelsten M, et al. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions. Clin Neurol Neurosurg. 2020;192:105718. [DOI:10.1016/j.clineuro.2020.105718]
2. Chen W, Lu Z, You L, Zhou L, Xu J, Chen K. Artificial intelligence-based multimodal risk assessment model for surgical site infection (AMRAMS): development and validation study. JMIR medical informatics. 2020 Jun 15;8(6):e18186. [DOI:10.2196/18186]
3. Tunthanathip T, Sae-Heng S, Oearsakul T, Sakarunchai I, Kaewborisutsakul A, Taweesomboonyat C. Machine learning applications for the prediction of surgical site infection in neurological operations. Neurosurg Focus. 2019;47(2):E7. [DOI:10.3171/2019.5.FOCUS19241]
4. Fletcher RR, Olubeko O, Sonthalia H, Kateera F, Nkurunziza T, Ashby JL, et al. Application of Machine Learning to Prediction of Surgical Site Infection. Annu Int Conf IEEE Eng Med Biol Soc. 2019:2234-7. [DOI:10.1109/EMBC.2019.8857942]
5. Kuo PJ, Wu SC, Chien PC, Chang SS, Rau CS, Tai HL, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget. 2018;9(17):13768-82. [DOI:10.18632/oncotarget.24468]
6. Bartz-Kurycki MA, Green C, Anderson KT, Alder AC, Bucher BT, Cina RA, et al. Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm. The American Journal of Surgery. 2018;216(4):764-77. [DOI:10.1016/j.amjsurg.2018.07.041]
7. Farrokhi M, Taheri F, Moeini A, Farrokhi M, Sayed Alireza MZ, Farahmandsadr M, et al. Artificial Intelligence for Remote Patient Monitoring: Advancements, Applications, and Challenges. Kindle. 2024;4(1):1-261.
8. Amiri H, Ghaneiyan M, Farjami P, Mehran H, Mohammadzadeh S, Ghaderi S, et al. AI-Enhanced Virtual Clinics and Telemedicine for Cancer Treatment. Kindle. 2024;4(1):1-207.
9. Rafaqat W, Fatima HS, Kumar A, Khan S, Khurram M. Machine learning model for assessment of risk factors and postoperative day for superficial vs deep/organ-space surgical site infections. Surgical innovation. 2023;30(4):455-62. [DOI:10.1177/15533506231170933]
10. Liu L, Ni Y, Zhang N, Nick Pratap J. Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children's surgery. International journal of medical informatics. 2019;129:234-41. [DOI:10.1016/j.ijmedinf.2019.06.007]
11. Luo L, Zhang F, Yao Y, Gong R, Fu M, Xiao J. Machine learning for identification of surgeries with high risks of cancellation. Health informatics journal. 2020;26(1):141-55. [DOI:10.1177/1460458218813602]
12. El Hechi MW, Maurer LR, Levine J, Zhuo D, El Moheb M, Velmahos GC, et al. Validation of the Artificial Intelligence-Based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) Calculator in Emergency General Surgery and Emergency Laparotomy Patients. Journal of the American College of Surgeons. 2021;232(6):912-9. [DOI:10.1016/j.jamcollsurg.2021.02.009]
13. Gale SC, Shafi S, Dombrovskiy VY, Arumugam D, Crystal JS. The public health burden of emergency general surgery in the United States: A 10-year analysis of the Nationwide Inpatient Sample -2001 to 2010. J Trauma Acute Care Surg. 2014;77(2):202-8. [DOI:10.1097/TA.0000000000000362]
14. Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and Machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) Calculator. Annals of surgery. 2018;268(4):574-83. [DOI:10.1097/SLA.0000000000002956]
15. Gao J, Merchant AM. A machine learning approach in predicting mortality following emergency general surgery. The American Surgeon. 2021;87(9):1379-85. [DOI:10.1177/00031348211038568]
16. Khoshravesh S, Arab M, Nouri N, Nouri B, Pirastehfar Z, Ghavami B. A Comparative Cohort Study of Laparoscopy Versus Laparotomy for the Treatment of Iranian Endometrial Cancer Patients. International Journal of Cancer Management. 2024;17(1):e141894. [DOI:10.5812/ijcm-141894]
17. DiPietro R, Ahmidi N, Malpani A, Waldram M, Lee GI, Lee MR, et al. Segmenting and classifying activities in robot-assisted surgery with recurrent neural networks. Int J Comput Assist Radiol Surg. 2019;14(11):2005-20. [DOI:10.1007/s11548-019-01953-x]
18. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA. Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks. International journal of computer assisted radiology and surgery. 2019;14(9):1611-7. [DOI:10.1007/s11548-019-02039-4]
19. Anh NX, Nataraja RM, Chauhan S. Towards near real-time assessment of surgical skills: A comparison of feature extraction techniques. Comput Methods Programs Biomed. 2020;187:105234. [DOI:10.1016/j.cmpb.2019.105234]
20. Gao Y, Kruger U, Intes X, Schwaitzberg S, De S. A machine learning approach to predict surgical learning curves. Surgery. 2020;167(2):321-7. [DOI:10.1016/j.surg.2019.10.008]
21. Park HJ, Jung DY, Ji W, Choi CM. Detection of bacteremia in surgical in-patients using recurrent neural network based on time series records: development and validation study. Journal of Medical Internet Research. 2020;22(8):e19512. [DOI:10.2196/19512]
22. Lefor AK, Harada K, Dosis A, Mitsuishi M. Motion analysis of the JHU-ISI gesture and skill assessment working set II: learning curve analysis. International Journal of Computer Assisted Radiology and Surgery. 2021;16(4):589-95. [DOI:10.1007/s11548-021-02339-8]
23. Hernandez JD, Bann SD, Munz Y, Moorthy K, Datta V, Martin S, et al. Qualitative and quantitative analysis of the learning curve of a simulated surgical task on the da Vinci system. Surgical Endoscopy And Other Interventional Techniques. 2004;18(3):372-8. [DOI:10.1007/s00464-003-9047-3]
24. Hung AJ, Oh PJ, Chen J, Ghodoussipour S, Lane C, Jarc A, et al. Experts vs super-experts: differences in automated performance metrics and clinical outcomes for robot-assisted radical prostatectomy. BJU international. 2019;123(5):861-8. [DOI:10.1111/bju.14599]
25. Hung AJ, Chen J, Gill IS. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA surgery. 2018;153(8):770-1. [DOI:10.1001/jamasurg.2018.1512]
26. Shafiei SB, Iqbal U, Hussein AA, Guru KA. Utilizing deep neural networks and electroencephalogram for objective evaluation of surgeon's distraction during robot-assisted surgery. Brain research. 2021;1769:147607. [DOI:10.1016/j.brainres.2021.147607]
27. Fazlollahi AM, Bakhaidar M, Alsayegh A, Yilmaz R, Winkler-Schwartz A, Mirchi N, Langleben I, Ledwos N, Sabbagh AJ, Bajunaid K, Harley JM. Effect of artificial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students: a randomized clinical trial. JAMA network open. 2022;5(2):e2149008-. [DOI:10.1001/jamanetworkopen.2021.49008]
28. Hadaya J, Verma A, Sanaiha Y, Ramezani R, Qadir N, Benharash P. Machine learning-based modeling of acute respiratory failure following emergency general surgery operations. PLoS One. 2022;17(4):e0267733. [DOI:10.1371/journal.pone.0267733]
29. Roh CK, Choi S, Seo WJ, Cho M, Kim HI, Lee SK, et al. Incidence and treatment outcomes of leakage after gastrectomy for gastric cancer: Experience of 14,075 patients from a large volume centre. Eur J Surg Oncol. 2021;47(9):2304-12. [DOI:10.1016/j.ejso.2021.02.013]
30. Liu X, Lei S, Wei Q, Wang Y, Liang H, Chen L. Machine Learning-based Correlation Study between Perioperative Immunonutritional Index and Postoperative Anastomotic Leakage in Patients with Gastric Cancer. Int J Med Sci. 2022;19(7):1173-83. [DOI:10.7150/ijms.72195]
31. Smith MTD, Bruce JL, Clarke DL. Using Machine Learning to Establish Predictors of Mortality in Patients Undergoing Laparotomy for Emergency General Surgical Conditions. World J Surg. 2022;46(2):339-46. [DOI:10.1007/s00268-021-06360-5]
32. El Moheb M, Gebran A, Maurer LR, Naar L, El Hechi M, Breen K, et al. Artificial intelligence versus surgeon gestalt in predicting risk of emergency general surgery. J Trauma Acute Care Surg. 2023;95(4):565-72. [DOI:10.1097/TA.0000000000004030]
33. Jung JO, Crnovrsanin N, Wirsik NM, Nienhüser H, Peters L, Popp F, et al. Machine learning for optimized individual survival prediction in resectable upper gastrointestinal cancer. J Cancer Res Clin Oncol. 2023;149(5):1691-702. [DOI:10.1007/s00432-022-04063-5]
34. Kovoor JG, Bacchi S, Gupta AK, Stretton B, Malycha J, Reddi BA, et al. The Adelaide Score: An artificial intelligence measure of readiness for discharge after general surgery. ANZ J Surg. 2023;93(9):2119-24. [DOI:10.1111/ans.18546]
35. Mahmud S, Mansour M, Cumak EN, Kutlu M. Deep learning based suture training system. Surgery open science. 2023;15:1-11. [DOI:10.1016/j.sopen.2023.07.023]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Surgery and Trauma

Designed & Developed by : Yektaweb