1. Jaakkola H, Henno J, Mäkelä J, Thalheim B. Artificial intelligence yesterday, today and tomorrow. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) 2019; 860-867). [
DOI:10.23919/MIPRO.2019.8756913]
2. Tahayori B, Chini-Foroush N, Akhlaghi H. Advanced natural language processing technique to predict patient disposition based on emergency triage notes. Emerg Med Australas. 2021; 33:480-484. [
DOI:10.1111/1742-6723.13656]
3. Kishore K, Braitberg G, Holmes NE, Bellomo R. Early prediction of hospital admission of emergency department patients. Emerg Med Australas. 2023; 35: 572-588. [
DOI:10.1111/1742-6723.14169]
4. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017; 69: 36-40. [
DOI:10.1016/j.metabol.2017.01.011]
5. Nagi F, Salih R, Alzubaidi M, Shah H, Alam T, Shah Z, et al. Applications of Artificial Intelligence (AI) in Medical Education: A Scoping Review. Healthcare Transformation with Informatics and Artificial Intelligence. 2023:648-651. [
DOI:10.3233/SHTI230581]
6. Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence and machine learning in emergency medicine. Emerg Med Australas. 2018;30(6):870-874. [
DOI:10.1111/1742-6723.13145]
7. Zheng J, Lin D, Gao Z, Wang S, He M, Fan J. Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access. 2020; 8:96946-96954. [
DOI:10.1109/ACCESS.2020.2993536]
8. Zhang P-I, Hsu C-C, Kao Y, Chen C-J, Kuo Y-W, Hsu S-L, et al. Real-time AI prediction for major adverse cardiac events in emergency department patients with chest pain. Scandinavian Journal of Trauma. Resuscitation and Emergency Medicine. 2020;28(1):1-7. [
DOI:10.1186/s13049-020-00786-x]
9. Chen Y, Stewart JW, Ge J, Cheng B, Chekroud A, Hellerstein DJ. Personalized symptom clusters that predict depression treatment outcomes: A replication of machine learning methods. J Affect Disord Rep. 2023; 11:100470. [
DOI:10.1016/j.jadr.2023.100470]
10. Chen Y-M, Chen P-C, Lin W-C, Hung K-C,Chen Y-CB, Hung C-F, et al. Predicting new-onset post-stroke depression from real-world data using machine learning algorithm. Front Psychiatry. 2023; 14:1195586. [
DOI:10.3389/fpsyt.2023.1195586]
11. Choi JH, Kim H-A, Kim W, Lim I, Lee I, Byun BH, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning. Scientific reports. 2020; 10(1):21149. [
DOI:10.1038/s41598-020-77875-5]
12. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg. 2018;268(1):70-76. [
DOI:10.1097/SLA.0000000000002693]
13. Morley J, Machado CC, Burr C, Cowls J, Joshi I, Taddeo M, et al. The ethics of AI in health care: a mapping review. Social Science & Medicine. 2020; 260:113172. [
DOI:10.1016/j.socscimed.2020.113172]
14. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69(21):2657-2664. [
DOI:10.1016/j.jacc.2017.03.571]
15. Char DS, Shah NH, Magnus D. Implementing machine learning in health care-addressing ethical challenges. The New England journal of medicine. 2018; 378(11):981-983. [
DOI:10.1056/NEJMp1714229]
16. Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. Practical guidance on artificial intelligence for health-care data. Lancet Digit Health. 2019; 1(4): 157-159. [
DOI:10.1016/S2589-7500(19)30084-6]
17. Liu N, Zhang Z, Ho AF, Ong ME. Artificial intelligence in emergency medicine. J Emerg Crit Care Med (JECCM).2018;2(8);1-6. [
DOI:10.21037/jeccm.2018.10.08]
18. Grant K, McParland A. Applications0 of artificial intelligence in emergency medicine. University of Toronto medical journal (UTMJ). 2019;96(1);37-39.