Volume 13, Issue 4 (10-2025)                   J Surg Trauma 2025, 13(4): 144-153 | Back to browse issues page

Ethics code: IR.SKU.REC.1402.059

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shirian S, Emamjomehzadeh P, Javdani M, Khosravian P, Karimi B. Investigating the Therapeutic Effects of Selenium Nanoparticles and Tannic Acid on Postoperative Peritoneal Adhesion in Rats. J Surg Trauma 2025; 13 (4) :144-153
URL: http://jsurgery.bums.ac.ir/article-1-491-en.html
Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
Abstract:   (60 Views)
Introduction: Developing effective and targeted therapeutic strategies for peritonitis and postoperative abdominal adhesions is essential to mitigate severe sequelae, including intestinal obstruction and infertility. Therefore, this study aimed to evaluate the efficacy of intraperitoneally administered tannic acid and selenium nanoparticles (SeNPs) in controlling experimental intraperitoneal adhesions in rats, leveraging their potential anti-inflammatory and antioxidant properties.
Methods: This experimental study included 30 adult male rats randomly divided into five equal groups: sham group (only laparotomy of the rats was performed without experimental adhesion induction), control group (experimental adhesion induction without any therapeutic intervention), SeNPs group (intraperitoneal administration of SeNPs after induction of peritoneal adhesion), tannic acid (TA) group (intraperitoneal administration of tannic acid after induction of peritoneal adhesions), and selenium nano tannic acid (SeNTA) group (intraperitoneal administration of SeNPs containing tannic acid after induction of peritoneal adhesion). Seven days after the induction of peritoneal adhesions, abdominal adhesion rates and histopathological parameters were investigated and compared among the different groups using the Kruskal-Wallis test.
Results: Abdominal adhesion formation was significantly reduced in the TA and SeNTA treatment groups compared to controls (P = 0.01), while SeNPs showed no significant improvement (P = 0.121). SeNTA demonstrated superior efficacy among treatments with significantly lower adhesion scores than SeNPs (P = 0.013) and no difference from TA (P = 0.65). Histopathological analysis revealed that all treatments significantly reduced fibroplasia versus controls (P < 0.05). However, SeNTA exhibited the most favorable tissue profile, showing significantly reduced inflammation, collagen deposition, and vascularization compared to the TA and SeNPs groups (P < 0.05).
Conclusion: This leads to the conclusion that the simultaneous administration of tannic acid and SeNPs, both of which have antioxidant and anti-inflammatory impacts, has been synergistically effective in controlling peritoneal adhesions.
Full-Text [PDF 1184 kb]   (26 Downloads) |   |   Full-Text (HTML)  (9 Views)  
Type of Study: Research | Subject: General Surgery
Received: 2025/07/21 | Accepted: 2025/09/27 | ePublished ahead of print: 2025/10/13 | Published: 2025/10/14

References
1. Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol. 2011;17(41):4545-53. [DOI:10.3748/wjg.v17.i41.4545]
2. Van Goor H. Consequences and complications of peritoneal adhesions. Colorectal Dis. 2007;9 Suppl 2:25-34. [DOI:10.1111/j.1463-1318.2007.01358.x]
3. ten Broek RP, Issa Y, van Santbrink EJ, Bouvy ND, Kruitwagen RF, Jeekel J, et al. Burden of adhesions in abdominal and pelvic surgery: systematic review and met-analysis. BMJ. 2013;347:f5588. [DOI:10.1136/bmj.f5588]
4. Tsauo J, Song HY, Choi EY, Kim DK, Kim KY, Park JH, et al. EW-7197, an oral transforming growth factor β type I receptor kinase inhibitor, for preventing peritoneal adhesion formation in a rat model. Surgery. 2018;164(5):1100-8. [DOI:10.1016/j.surg.2018.07.005]
5. Lower AM, Hawthorn RJ, Ellis H, O'Brien F, Buchan S, Crowe AM. The impact of adhesions on hospital readmissions over ten years after 8849 open gynaecological operations: an assessment from the Surgical and Clinical Adhesions Research Study. BJOG. 2000;107(7):855-62. [DOI:10.1111/j.1471-0528.2000.tb11083.x]
6. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Dig Surg. 2001;18(4):260-73. [DOI:10.1159/000050149]
7. Rahimi VB, Shirazinia R, Fereydouni N, Zamani P, Darroudi S, Sahebkar AH, et al. Comparison of honey and dextrose solution on post-operative peritoneal adhesion in rat model. Biomed Pharmacother. 2017;92:849-55. [DOI:10.1016/j.biopha.2017.05.114]
8. Kakanezhadi A, Rezaei M, Raisi A, Dezfoulian O, Davoodi F, Ahmadvand H. Rosmarinic acid prevents post-operative abdominal adhesions in a rat model. Sci Rep. 2022;12(1):18593. [DOI:10.1038/s41598-022-22000-x]
9. Razazi A, Kakanezhadi A, Raisi A, Pedram B, Dezfoulian O, Davoodi F. D-limonene inhibits peritoneal adhesion formation in rats via anti-inflammatory, anti-angiogenic, and antioxidative effects. Inflammopharmacology. 2024;32(2):1077-89. [DOI:10.1007/s10787-023-01417-4]
10. Kamel RM. Prevention of postoperative peritoneal adhesions. Eur J Obstet Gynecol Reprod Biol. 2010;150(2):111-8. [DOI:10.1016/j.ejogrb.2010.02.003]
11. Barmparas G, Branco BC, Schnüriger B, Lam L, Inaba K, Demetriades D. The incidence and risk factors of post-laparotomy adhesive small bowel obstruction. J Gastrointest Surg. 2010;14(10):1619-28. [DOI:10.1007/s11605-010-1189-8]
12. Reed KL, Heydrick SJ, Aarons CB, Prushik S, Gower AC, Stucchi AF, et al. A neurokinin-1 receptor antagonist that reduces intra-abdominal adhesion formation decreases oxidative stress in the peritoneum. Am J Physiol Gastrointest Liver Physiol. 2007;293(3):G544-51. [DOI:10.1152/ajpgi.00226.2007]
13. Heydrick SJ, Reed KL, Cohen PA, Aarons CB, Gower AC, Becker JM, et al. Intraperitoneal administration of methylene blue attenuates oxidative stress, increases peritoneal fibrinolysis, and inhibits intraabdominal adhesion formation. J Surg Res. 2007;143(2):311-9. [DOI:10.1016/j.jss.2006.11.012]
14. Reed KL, Stucchi AF, Leeman SE, Becker JM. Inhibitory effects of a neurokinin-1 receptor antagonist on postoperative peritoneal adhesion formation. Ann N Y Acad Sci. 2008;1144:116-26. [DOI:10.1196/annals.1418.010]
15. Ferro C, Florindo HF, Santos HA. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv Healthc Mater. 2021;10(16):e2100598. [DOI:10.1002/adhm.202100598]
16. Li Y, Liu G, Wang M, Zhang Y, You S, Zhang J, et al. The controlled release and prevention of abdominal adhesion of tannic acid and mitomycin c-loaded thermosensitive gel. Polymers (Basel). 2023;15(4):975. [DOI:10.3390/polym15040975]
17. Molinaro G, Fontana F, Pareja Tello R, Wang S, López Cérda S, Torrieri G, et al. In Vitro Study of the Anti-inflammatory and Antifibrotic Activity of Tannic Acid-Coated Curcumin-Loaded Nanoparticles in Human Tenocytes. ACS Appl Mater Interfaces. 2023;15(19):23012-23. [DOI:10.1021/acsami.3c05322]
18. Reed EB, Ard S, La J, Park CY, Culligan L, Fredberg JJ, et al. Anti-fibrotic effects of tannic acid through regulation of a sustained TGF-beta receptor signaling. Respir Res. 2019;20(1):168. [DOI:10.1186/s12931-019-1141-8]
19. Rozga J, Andersson R, Srinivas U, Ahren B, Benmark S. Influence of Phosphatidylcholine on intra-abdominal adhesion formation and peritoneal macrophages. Nephron. 1990;54(2):134-8. [DOI:10.1159/000185833]
20. Deng X, Zheng C, Wang S, Yang R, Liu Z, Chen T. Treatment with a probiotic combination reduces abdominal adhesion in rats by decreasing intestinal inflammation and restoring microbial composition. Oncol Rep. 2020;43(3):986-98. [DOI:10.3892/or.2020.7463]
21. Beyene RT, Kavalukas SL, Barbul A. Intra-abdominal adhesions: anatomy, physiology, pathophysiology, and treatment. Curr Probl Surg. 2015;52(7):271-319. [DOI:10.1067/j.cpsurg.2015.05.001]
22. Gil ES, Aleksi E, Spirio L. PuraStat RADA16 self-assembling peptide reduces postoperative abdominal adhesion formation in a rabbit cecal sidewall injury model. Front Bioeng Biotechnol. 2021;9:782224. [DOI:10.3389/fbioe.2021.782224]
23. Tsai JM, Shoham M, Fernhoff NB, George BM, Marjon KD, McCracken MN, et al. Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation. Blood Adv. 2019;3(18):2713-21. [DOI:10.1182/bloodadvances.2018024026]
24. Hu Q, Xia X, Kang X, Song P, Liu Z, Wang M, et al. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion. Int J Biol Sci. 2021;17(1):298-306. [DOI:10.7150/ijbs.54403]
25. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677-87. [DOI:10.1038/nm.3893]
26. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223. [DOI:10.1098/rsob.200223]
27. Uyama N, Tsutsui H, Wu S, Yasuda K, Hatano E, Qin XY, et al. Anti-interleukin-6 receptor antibody treatment ameliorates postoperative adhesion formation. Sci Rep. 2019;9(1):17558. [DOI:10.1038/s41598-019-54175-1]
28. Yang S, Zheng Y, Pu Z, Nian H, Li J. The multiple roles of macrophages in peritoneal adhesion. Immunol Cell Biol. 2025;103(1):31-44. [DOI:10.1111/imcb.12831]
29. Mutsaers SE, Prêle CM, Pengelly S, Herrick SE. Mesothelial cells and peritoneal homeostasis. Fertil Steril. 2016;106(5):1018-24. [DOI:10.1016/j.fertnstert.2016.09.005]
30. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894-904. [DOI:10.1111/j.1538-7836.2005.01365.x]
31. Tzianabos AO, Holsti MA, Zheng XX, Stucchi AF, Kuchroo VK, Strom TB, et al. Functional Th1 cells are required for surgical adhesion formation in a murine model. J Immunol. 2008;180(10):6970-6. [DOI:10.4049/jimmunol.180.10.6970]
32. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450-62. [DOI:10.1016/j.immuni.2016.02.015]
33. Sirovy M, Odlozilova S, Kotek J, Zajak J, Paral J. Current options for the prevention of postoperative intra-abdominal adhesions. Asian J Surg. 2024;47(1):77-82. [DOI:10.1016/j.asjsur.2023.10.001]
34. Barrientos S, Stojadinovic O, Golinko M, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585-601. [DOI:10.1111/j.1524-475X.2008.00410.x]
35. Hellebrekers BW, Kooistra T. Pathogenesis of postoperative adhesion formation. Br J Surg. 2011;98(11):1503-16. [DOI:10.1002/bjs.7657]
36. Koninckx PR, Gomel V, Ussia A, Adamyan L. Role of the peritoneal cavity in the prevention of postoperative adhesions, pain, and fatigue. Fertil Steril. 2016;106(5):998-1010. [DOI:10.1016/j.fertnstert.2016.08.012]
37. Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, et al. Mechanisms of peritoneal fibrosis: focus on immune cells-peritoneal stroma interactions. Front Immunol. 2021;12:607204. [DOI:10.3389/fimmu.2021.607204]
38. Kaboutari J, Ghorbani M, Karimi B, Javdani M, Khosraviyan P. Effects of the Slow-release Curcumin-loaded Selenium Nanoparticles on Experimental Peritonitis. Iran J Vet Med. 2024;18(4):555-66. [DOI:10.32598/ijvm.18.4.1005414]
39. El-Ghazaly MA, Fadel NA, Rashed ER, El-Batal AI, Kenawy SA. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can J Physiol Pharmacol. 2017;95(2):101-10. [DOI:10.1139/cjpp-2016-0183]
40. Xiao J, Li N, Xiao S, Wu Y, Liu H. Comparison of selenium nanoparticles and sodium selenite on the alleviation of early atherosclerosis by inhibiting endothelial dysfunction and inflammation in apolipoprotein e-deficient mice. Int J Mol Sci. 2021;22(21):11612. [DOI:10.3390/ijms222111612]
41. Andrés CMC, Pérez de la Lastra JM, Munguira EB, Juan CA, Pérez-Lebeña E. Selenium Nanoparticles in Critical Illness---Anti-Inflammatory and Antioxidant Effects. Dietetics. 2025;4(1):6. [DOI:10.3390/dietetics4010006]
42. Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother. 2022;154:113561. [DOI:10.1016/j.biopha.2022.113561]
43. Zhang J, Song Q, Han X, Zhang Y, Zhang Y, Zhang X, et al. Multi-targeted protection of acetaminophen-induced hepatotoxicity in mice by tannic acid. Int Immunopharmacol. 2017;47:95-105. [DOI:10.1016/j.intimp.2017.03.027]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Surgery and Trauma

Designed & Developed by : Yektaweb